3 research outputs found

    Physical sketching tools and techniques for customized sensate surfaces

    Get PDF
    Sensate surfaces are a promising avenue for enhancing human interaction with digital systems due to their inherent intuitiveness and natural user interface. Recent technological advancements have enabled sensate surfaces to surpass the constraints of conventional touchscreens by integrating them into everyday objects, creating interactive interfaces that can detect various inputs such as touch, pressure, and gestures. This allows for more natural and intuitive control of digital systems. However, prototyping interactive surfaces that are customized to users' requirements using conventional techniques remains technically challenging due to limitations in accommodating complex geometric shapes and varying sizes. Furthermore, it is crucial to consider the context in which customized surfaces are utilized, as relocating them to fabrication labs may lead to the loss of their original design context. Additionally, prototyping high-resolution sensate surfaces presents challenges due to the complex signal processing requirements involved. This thesis investigates the design and fabrication of customized sensate surfaces that meet the diverse requirements of different users and contexts. The research aims to develop novel tools and techniques that overcome the technical limitations of current methods and enable the creation of sensate surfaces that enhance human interaction with digital systems.Sensorische Oberflächen sind aufgrund ihrer inhärenten Intuitivität und natürlichen Benutzeroberfläche ein vielversprechender Ansatz, um die menschliche Interaktionmit digitalen Systemen zu verbessern. Die jüngsten technologischen Fortschritte haben es ermöglicht, dass sensorische Oberflächen die Beschränkungen herkömmlicher Touchscreens überwinden, indem sie in Alltagsgegenstände integriert werden und interaktive Schnittstellen schaffen, die diverse Eingaben wie Berührung, Druck, oder Gesten erkennen können. Dies ermöglicht eine natürlichere und intuitivere Steuerung von digitalen Systemen. Das Prototyping interaktiver Oberflächen, die mit herkömmlichen Techniken an die Bedürfnisse der Nutzer angepasst werden, bleibt jedoch eine technische Herausforderung, da komplexe geometrische Formen und variierende Größen nur begrenzt berücksichtigt werden können. Darüber hinaus ist es von entscheidender Bedeutung, den Kontext, in dem diese individuell angepassten Oberflächen verwendet werden, zu berücksichtigen, da eine Verlagerung in Fabrikations-Laboratorien zum Verlust ihres ursprünglichen Designkontextes führen kann. Zudem stellt das Prototyping hochauflösender sensorischer Oberflächen aufgrund der komplexen Anforderungen an die Signalverarbeitung eine Herausforderung dar. Diese Arbeit erforscht dasDesign und die Fabrikation individuell angepasster sensorischer Oberflächen, die den diversen Anforderungen unterschiedlicher Nutzer und Kontexte gerecht werden. Die Forschung zielt darauf ab, neuartigeWerkzeuge und Techniken zu entwickeln, die die technischen Beschränkungen derzeitigerMethoden überwinden und die Erstellung von sensorischen Oberflächen ermöglichen, die die menschliche Interaktion mit digitalen Systemen verbessern

    Multi-Touch Kit: A Do-It-Yourself Technique for Capacitive Multi-Touch Sensing Using a Commodity Microcontroller

    No full text
    Copyright © 2019 Association of Computing Machinery. Mutual capacitance-based multi-touch sensing is now a ubiquitous and high-fidelity input technology. However, due to the complexity of electrical and signal processing requirements, it remains very challenging to create interface prototypes with custom-designed multi-touch input surfaces. In this paper, we introduce Multi-Touch Kit, a technique enabling electronics novices to rapidly prototype customized capacitive multi-touch sensors. In contrast to existing techniques, it works with a commodity microcontroller and open-source software and does not require any specialized hardware. Evaluation results show that our approach enables multi-touch sensors with a high spatial and temporal resolution and can accurately detect multiple simultaneous touches. A set of application examples demonstrates the versatile uses of our approach for sensors of different scales, curvature, and materials

    A New RSTB Invariant Image Template Matching Based on Log-Spectrum and Modified ICA

    Get PDF
    Template matching is a widely used technique in many of image processing and machine vision applications. In this paper we propose a new as well as a fast and reliable template matching algorithm which is invariant to Rotation, Scale, Translation and Brightness (RSTB) changes. For this purpose, we adopt the idea of ring projection transform (RPT) of image. In the proposed algorithm, two novel suggestions are offered that significantly increase the precision and performance of the previous methods. First, our algorithm works with Log-Spectrum of image instead of the image itself, this change increases the accuracy of matching, and secondly for boosting the speed of the searching strategy, a new and modified version of Imperialist Competitive Algorithm, MICA, is presented. This matching procedure avoids the searching algorithm from being trapped in local minimum by taking advantage of adding a modification step to ICA. The simulation results show the superiority of proposed method in comparison with the previous ones
    corecore